Published on

National Book Foundation (NBF) Class 11 Math Exercise 8.1 Solution

Authors

First Year Math New Book Exercise 8.1 Solution

To solve the trigonometric identities for given angles:

  1. Find the values of cos(α±β)\cos(\alpha \pm \beta), sin(α±β)\sin(\alpha \pm \beta), tan(α±β)\tan(\alpha \pm \beta) for each given pair of angles.

    (i) Given: α=180\alpha = 180^\circ, β=60\beta = 60^\circ

    Solution:

    cos(α+β)=cos(180+60)=cos60=12cos(αβ)=cos(18060)=cos120=12sin(α+β)=sin(180+60)=sin60=32sin(αβ)=sin(18060)=sin60=32tan(α+β)=tan(180+60)=tan60=3tan(αβ)=tan(18060)=tan60=3\begin{align*} \cos(\alpha + \beta) &= \cos(180^\circ + 60^\circ) = -\cos 60^\circ = -\frac{1}{2} \\ \cos(\alpha - \beta) &= \cos(180^\circ - 60^\circ) = -\cos 120^\circ = -\frac{1}{2} \\ \sin(\alpha + \beta) &= \sin(180^\circ + 60^\circ) = -\sin 60^\circ = -\frac{\sqrt{3}}{2} \\ \sin(\alpha - \beta) &= \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2} \\ \tan(\alpha + \beta) &= \tan(180^\circ + 60^\circ) = \tan 60^\circ = \sqrt{3} \\ \tan(\alpha - \beta) &= \tan(180^\circ - 60^\circ) = -\tan 60^\circ = -\sqrt{3} \end{align*}

    (ii) Given: α=90\alpha = 90^\circ, β=45\beta = 45^\circ

    Solution:

    cos(α+β)=cos(90+45)=cos135=22cos(αβ)=cos(9045)=cos45=22sin(α+β)=sin(90+45)=sin135=22sin(αβ)=sin(9045)=sin45=22tan(α+β)=tan(90+45)=cot45=1tan(αβ)=tan(9045)=tan45=1 \begin{align*} \cos(\alpha + \beta) &= \cos(90^\circ + 45^\circ) = \cos 135^\circ = -\frac{\sqrt{2}}{2} \\ \cos(\alpha - \beta) &= \cos(90^\circ - 45^\circ) = \cos 45^\circ = \frac{\sqrt{2}}{2} \\ \sin(\alpha + \beta) &= \sin(90^\circ + 45^\circ) = \sin 135^\circ = \frac{\sqrt{2}}{2} \\ \sin(\alpha - \beta) &= \sin(90^\circ - 45^\circ) = \sin 45^\circ = \frac{\sqrt{2}}{2} \\ \tan(\alpha + \beta) &= \tan(90^\circ + 45^\circ) = -\cot 45^\circ = -1 \\ \tan(\alpha - \beta) &= \tan(90^\circ - 45^\circ) = \tan 45^\circ = 1 \end{align*}

    (iii) Given: α=180\alpha = 180^\circ, β=30\beta = 30^\circ

    Solution:

    cos(α+β)=cos(180+30)=cos30=32cos(αβ)=cos(18030)=cos30=32sin(α+β)=sin(180+30)=sin30=12sin(αβ)=sin(18030)=sin30=12tan(α+β)=tan(180+30)=tan30=13tan(αβ)=tan(18030)=tan30=13\begin{align*} \cos(\alpha + \beta) &= \cos(180^\circ + 30^\circ) &= -\cos 30^\circ = -\frac{\sqrt{3}}{2} \\[10pt] \cos(\alpha - \beta) &= \cos(180^\circ - 30^\circ) &= -\cos 30^\circ = -\frac{\sqrt{3}}{2} \\[10pt] \sin(\alpha + \beta) &= \sin(180^\circ + 30^\circ) &= -\sin 30^\circ = -\frac{1}{2} \\[10pt] \sin(\alpha - \beta) &= \sin(180^\circ - 30^\circ) &= \sin 30^\circ = \frac{1}{2} \\[10pt] \tan(\alpha + \beta) &= \tan(180^\circ + 30^\circ) &= -\tan 30^\circ = -\frac{1}{\sqrt{3}} \\[10pt] \tan(\alpha - \beta) &= \tan(180^\circ - 30^\circ) &= -\tan 30^\circ = -\frac{1}{\sqrt{3}} \end{align*}